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WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES ON TRIANGULAR 

MESHES* 

CHANGQING HUt AND CHI-WANG SHU* 

Abstract. In this paper we construct high order weighted essentially non-oscillatory (WENO) schemes 

on two dimensional unstructured meshes (triangles) in the finite volume formulation. We present third 

order schemes using a combination of linear polynomials, and fourth order schemes using a combination of 

quadratic polynomials. Numerical examples are shown to demonstrate the accuracies and robustness of the 

methods for shock calculations. 

Key words, weighted essentially non-oscillatory schemes, unstructured mesh, high order accuracy, shock 

calculations. 

Subject classification. Applied and Numerical Mathematics 

1. Introduction. ENO (essentially non-oscillatory) schemes (Harten, Osher, Engquist and Chakravarthy 

[16], Shu and Osher [28, 29]) have been successfully applied to solve hyperbolic conservation laws and other 

convection dominated problems, for example in simulating shock turbulence interactions, Shu and Osher 

[29], Shu, Zang, Erlebacher, Whitaker and Osher [30], and Adams and Shariff [2]; in the direct simulation 

of compressible turbulence, Shu, Zang, Erlebacher, Whitaker and Osher [30], Walsteijn [35], and Ladeinde, 

O'Brien, Cai and Liu [20]; in solving the relativistic hydrodynamics equations, Dolezal and Wong [8]; in shock 

vortex interactions and other gas dynamics problems, Casper and Atkins [6] and Erlebacher, Hussaini and 

Shu [10]; in incompressible flow calculations, E and Shu [9] and Harabetian, Osher and Shu [13]; in solving 

the viscoelasticity equations with fading memory, Shu and Zeng [31]; in semi-conductor device simulation, 

Fatemi, Jerome and Osher [11] and Jerome and Shu [17], [18]; in image processing and level set methods, 

Osher and Sethian [24], Sethian [26], and Siddiqi, Kimia and Shu [32]. The original ENO paper by Harten, 

Osher, Engquist and Chakravarthy [16] was for a one dimensional finite volume formulation. Later, this finite 

volume formulation of ENO schemes has been extended to two dimensional structured meshes by Harten 

[14] and by Casper [5], and to unstructured triangular meshes by Abgrall [1], Harten and Chakravarthy 

[15], and Sonar [34]. Finite volume ENO schemes based on a staggered grid and Lax-Friedrichs formulation 

were given in Bianco, Puppo and Russo [4]. Although finite difference versions of ENO schemes [28, 29] are 

more efficient for multidimensional calculations, finite volume schemes have the advantage of easy handling 

of complicated geometry by arbitrary triangulations. 

WENO schemes were developed later to improve upon ENO schemes, in Liu, Osher and Chan [23] 

and Jiang and Shu [19]. Advantages of WENO schemes over ENO include the smoothness of numerical 

fluxes, better steady state convergence, and better accuracy using the same stencils. Levy, Puppo and Russo 

[22] designed one dimensional finite volume WENO schemes based on a staggered grid and Lax-Friedrichs 

formulation. 

For a review of ENO and WENO schemes, see [27]. 
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Recently, Friedrich [12] constructed WENO schemes on unstructured meshes using a co-volume for- 

mulation as in Abgrall [1]. The WENO schemes in [12] only achieve the same order of accuracy as the 

corresponding ENO schemes when the same set of stencils is considered. This is not optimal as was known 

in Jiang and Shu [19] for structured meshes. 

In this paper, we present higher order WENO schemes on triangular meshes when using the same set 

of ENO stencils. We will construct third order schemes using a combination of two-dimensional linear 

polynomials, and fourth order schemes using a combination of two-dimensional quadratic polynomials. 

We will first sketch the procedure to construct the high order linear schemes. The formulation at this 

stage is important to accommodate nonlinear WENO weights later. We then describe the third and fourth 

order WENO schemes. Numerical examples will be given, to demonstrate the accuracy and resolution of the 

constructed schemes. Concluding remarks are included at the end. 

2. Finite Volume Formulation. In this paper we solve the following two-dimensional conservation 

law: 

(Z'L) at     dx + dy 

using the finite volume formulation. Computational control volumes are simply triangles. 

Taking the triangle Aj as our control volume, we formulate the semi-discrete finite volume scheme of 

equation (2.1) as: 

(2.2) *.üi(t) + -L.J    F-nda = 0 
dt 

where üi(t) is the cell average of u on the cell Ai, F = (/, g)T, and n is the outward unit normal of the 

triangle boundary SA^. 

The fine integral in (2.2) is discretized by a g-point Gaussian integration formula, 

r q 

(2.3) /   F-nds &\rk\'%2lüJF(u(G3>t))-n 

and F(u(Gj,t)) -n is replaced by a numerical flux. The simple Lax-Friedrichs flux is used in all our numerical 

experiments, which is given by 

(2.4) F(u(Gj,t))-n « \ \{F{U-{Ght)) + F(u+(G,-,t))) -n - a (u+(G,-,i)- «"(G,,*))] 

where a is taken as an upper bound for the eigenvalues of the Jacobian in the n direction, and u~ and u+ are 

the values of u inside the triangle and outside the triangle (inside the neighboring triangle) at the Gaussian 

point. 

Since we are constructing schemes up to fourth order accuracy, two point Gaussian q = 2 is used, which 

has Gi = cPi + (1 - c)P2, G2 = cP2 + (1 - c)Pi, c = \ + & and Ui = u>2 = \ for the line with end points 

Pi and P2. 

3. Reconstruction and Linear Schemes. Let Pk denote the set of two-dimensional polynomials of 

degree less than or equal to k. The reconstruction problem, from cell averages to point values, is as follows: 

given a smooth function u, and a triangulation with triangles {AQ, AI, ..., A^}, we would like to construct, 



for each triangle A*, a polynomial p{x,y) in Pk that has the same mean value as u on Aj, and is an (n+ l)-th 

order approximation to u on the cell A*. The mean value of a function u(x,y) on a cell A* is defined as 

(3.1) üi = T—1 /   u(x,y)dxdy. 
\^i\ JAi 

In order to determine K = (k+1Kk+2) degrees of freedom in a fc-th degree polynomial p, we need to use 

the information of at least K triangles. In addition to A* itself, we take its K - 1 neighboring cells, and we 

rename these K triangles as Si = {fii, fl2, -, ^K}, Si is called a stencil for the triangle A*. If we require 

that p has the mean value %• on % for all 1 < j < K, we will get a K x K linear system. If this linear 

system has a unique solution, Si is called an admissible stencil. Of course, in practice, we also have to worry 

about any ill conditioned linear system even if it is invertible. For linear polynomials k = 1, a stencil formed 

by A» and two of its neighbors is admissible for most triangulations. 

3.1. Third order reconstruction. To construct a third order linear scheme (a scheme is called linear 

if it is linear when applied to a linear equation with constant coefficients) as a starting point for the WENO 

procedure, we need a quadratic polynomial reconstruction. It seems that the most robust way is the least 

square reconstruction suggested by Barth and Frederickson [3]. For the control volume of triangle A0, see 

Fig. 3.1, let Ai, Aj , Afe be its three neighbors, and Aia , A^, be the two neighbors (other than A0) of A*, 

and so on. We determine the quadratic polynomial p2 by requiring that p2 has the same cell average as u 

on A0,, and also p2 has the same cell average as u on each triangle in the set 

{Ai, Aia, Aib, Aj, Aja, Ajb, Afc, Afca, Afeb }, 

but only in a least-square sense (as this is an over-determined system). Notice that some of the neighbors' 

neighbors (Aio, Aib, Aja,...) may coincide. For example, Aib might be the same as Aja. This, however, 

does not affect the least square procedure to determine p2. 

FIG. 3.1. .A typical stencil. 

A key step to build a high order WENO scheme based on lower order polynomials is carried out in 

the following. We want to constnict several linear polynomials whose weighted average will give the same 

result as the quadratic reconstruction p2 at each quadrature point (the weights are different for different 
quadrature points). 



We first build the following 9 linear polynomials by agreeing with the cell averages of u on the following 

stencils: pi (on triangles: 0,j, k), p2 (on triangles: Q,k,i), p^ (on triangles: 0,i,j), PA (on triangles: 0,i,ia), 

p5 (on triangles: 0,i,ib), p6 (on triangles: 0,j,ja), pr (on triangles: 0,j,jb), p$ (on triangles: 0,k,ka), and 

PQ (on triangles: 0, k, kb). 

For each quadrature point (xG,yG), we want to find the linear weights such that the linear combination 

of these ps 

9 

(3-2) R{x,v) = Y,W»i*>V) 
5=1 

satisfies R(xG,yG) = p2(xG,yG) with p2 defined before using the least squares procedure. Notice that there 

are in general 10 equations to be satisfied in order to make R(xG,yG) = p2(xG,yG) hold for any u. This 

is because both R and p2 depend on the 10 cell averages of u on the 10 triangles in the stencil. Note 

that there are situations when ia,ib,ja,jb,ka,kb might not be distinct, in these cases, we simply discard 

some of the ps, or just set the corresponding coefficient 7« to zero. For example, if ib — ja, we will just 

use Pi,P2,P3,P4,Pb,P7,P8,P9 and discard p6. In this case there is one fewer coefficient but also one fewer 

condition to satisfy for R(xG,yG) = p2{xG,yG), as there is one fewer triangle in the stencil. 

To illustrate the detail of the procedure, we will take (xG,yG) as the first quadrature point on side 

i, the interface of Ao and A», i.e. point G\ in Fig. 3.1. Without loss of generality we will assume that 

ia,ib,ja,jb,ka,kb are distinct. In order to make R(xG,yG) = p2(xG,yG) for any u, first we use the 6 

equalities for coefficients of the triangles ia,ib,ja,jb,ka,kb (i.e. to satisfy R(xG,yG) = p2{xG,yG) for the 

case when u has a cell average 1 on the triangle ia and cell averages 0 on all other triangles in the stencil, 

etc.), This will give us 6 equations. We then will use any two of the three equalities for the coefficients 

of triangles i,j,k which will give us two additional equations. Since pi,P2,P3 are linearly dependent and 

from the consistency (all polynomials are constants if u is a constant function), we claim that the other two 

equalities (for cell 0 and one oii,j,k) will be satisfied automatically if the above 8 equations are satisfied. 

Numerical experiments for various triangulations confirm our claim. 

We now have obtained a linear system of 8 equations with 9 unknowns, hence we still have one free 

parameter (one of 71,72,73). We would like to use this freedom to get a set of non-negative solutions, which 

is important for the WENO procedure to be developed later for shock calculations. Unfortunately, it turns 

out that, for many triangulations, it is impossible to do so. Some regrouping is needed and will be discussed 

later. Without worrying about positivity for the moment, we can choose the free parameter in any fashion. 

We will take 71 = 0 for side i (similarly 72 = 0 for side j, and 73 = 0 for side k). We thus have obtained 

all the combination coefficients 7^ (k = 1,..., 9) in (3.2) such that R(xG,yG) = p2{xG,yG) for any u, i.e. the 

linear polynomial R{x,y) in (3.2) approximates any smooth function u to third order accuracy at the point 

(xG,yG). 

3.2. Fourth order reconstruction. To construct a fourth order linear scheme as a starting point for 

the WENO procedure, we need a cubic polynomial reconstruction, which has 10 degrees of freedom. We thus 

only consider the case where ia,ib,ja,jb,ka,kb are distinct in the stencil (see Fig. 3.1). We construct the 

cubic polynomial p3 by requiring that its cell average agrees with that of u on each triangle in the 10-triangle 

stencil shown in Fig. 3.1. It seems that for most triangulations this reconstruction is possible. 

Again, the key step to build a high order WENO scheme based on lower order polynomials is carried 

out in the following. We would like to construct several quadratic polynomials whose weighted average will 

give the same result as the cubic reconstruction pz at each quadrature point (the weights are different for 



different quadrature points). The following 6 quadratic polynomials are constructed by having the same cell 

averages as u on the corresponding triangles: 

qi (on triangles: Q,i,ia,ib,k,kb), q2 (on triangles: 0,i,ia,ib,j,ja), 

q3 (on triangles: 0,j,ja,jb,i,ib), qA (on triangles: 0,j,ja,jb,k,ka), 

<75 (on triangles: 0,k,ka,kb,j,jb), q6 (on triangles: 0,k,ka,kb,i,id). 

For each quadrature point (xG,yG), we would like to find the linear weights such that the linear combi- 

nation of these qs 

6 

(3.3) Q{x,y) = J^7sqs{x,y) 
3=1 

satisfies Q(xG,yG) = p3(xG,yG) for all u. 

The above 6 quadratic polynomials are linearly dependent, but any 5 of them are linearly independent. 

We thus set one of the coefficients js to be 0, and determine the other 5 to satisfy Q(xG,yG) —pz(xG,yG). 

This looks like an over-determined problem, as there are 10 equations to satisfy but only 5 coefficients. 

Taking for example (q2, (ft, <74, <Z5, Qfe) for the linear combination, we need 10 equations for the 10 cell averages 

in the stencil, but similar to the third order case, numerical experiments for various triangulations show 

that there are actually only 5 independent equations among these 10, which means that we need only to 

establish 5 equations by the equalities of the coefficients of cell averages at any 5 triangles from the stencil, 

say, (ib, ja, jb, ha, kb), and the other 5 equations from triangles (0,i,j,k, ia) will be satisfied automatically. 

Since we can pick any one of the -ys to be 0, we have 6 different possible combinations. We also can take 

any average of these 6 combinations to obtain a new combination with the same accuracy. 

3.3. Accuracy test for the linear schemes. From the third and the fourth order reconstructions, 

we can now obtain the third and the fourth order linear schemes for (2.1) by replacing u~(Gj,t) in (2.4) 

with the reconstructed values R(xG,yG) in (3.2) or Q(xG,yG) in (3.3), respectively. Similarly, u+{Gj,t) is 

replaced with the reconstructed values in the neighboring cell Aj. 

For the temporal discretization, the third order TVD Runge-Kutta scheme of Shu and Osher [28] is used. 

For the fourth order scheme, we use At = (Am)4/3 to achieve fourth order accuracy in the time, but only for 

the examples of the accuracy test. 

Example 3.1. Two-dimensional linear equation: 

(3.4) ut + ux + uy = 0 

with the initial condition u0(x,y) - sin(|(a; + y)),    -2 < x < 2, -2 < y < 2, and periodic boundary 

conditions. 

We first use uniform triangular meshes which are obtained by adding one diagonal line in each rectangle, 

shown in Fig. 3.2 for the coarsest case h—\. In Table 3.1, the accuracy results are shown for both the 

third order scheme (from the combination of linear polynomials) and the fourth order scheme (from the 

combination of quadratic polynomials), where h is the length of the rectangles, at t — 2.0. The errors 

presented are those of the cell averages of u. 

We then use non-uniform meshes, shown in Fig. 3.3 for the coarsest case h = h0 = 1, where h is just an 

average length. The refinement of the meshes is done in a uniform way, namely by cutting each triangle into 

4 smaller similar ones. The accuracy result is shown in Table 3.2. 
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FIG. 3.2i Uniform mesh with h = % for accuracy test. 

TABLE 3.1 
Accuracy for 2D linear equation, uniform, meshes, linear schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

2/5 1.80E-01 — 2.79E-01 — 1.40E-02 — 2.17E-02 — 

1/5 2.81E-02 2.68 4.37E-02 2.68 9.11E-04 3.94 1.41E-03 3.94 

1/10 3.65E-03 2.95 5.72E-03 2.93 5.57E-05 4.03 8.72E-05 4.02 

1/20 4.60E-04 2.99 7.22E-04 2.99 3.43E-06 4.02 5.39E-06 4.02 

1/40 5.76E-05 3.00 9.05E-05 3.00 2.12E-07 4.02 3.34E-07 4.01 

1/80 7.21E-06 3.00 1.13E-05 3.00 1.32E-08 4.01 2.07E-08 4.01 

Example 3.2. Two-dimensional Burgers' equation: 

(3.5) v.t + WAV. o 

with the initial condition u0(x,y) = 0.3+0.7 sin(~(x+y)),   -2 < x < 2, -2 < y < 2, and periodic boundary 

conditions. 

We first use the same uniform triangular meshes as in Example 3.1, shown in Fig. 3.2 for the coarsest 

case h = |. In Table 3.3, the accuracy results are shown for both the third order scheme and the fourth 

order scheme, at t = 0.5/ir2 when the solution is still smooth. The errors presented are those of the point 

values at the 6 quadrature points of each triangle. 

We then use the same non-uniform meshes as in Example 3.1, shown in Fig. 3.3 for the coarsest case. 

The accuracy result is shown in Table 3.4. 

Example 3.3. Two-dimensional vortex evolution problem for the Euler equations. See [27] for a description 

of this problem. We consider the compressible Euler equations of gas dynamics: 

(3.6) 6 + /(6x + 5(a = 0 



where 

FIG. 3.3. Non-uniform mesh ivith h = 1 for accuracy test. 

TABLE 3.2 

Accuracy for 2D linear equation, non-uniform meshes, linear schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

hQ/2 1.21E-01 — 2.25E-01 — 4.95E-03 — 1.73E-02 — 

ho/4 1.81E-02 2.74 3.74E-02 2.59 2.90E-04 4.09 1.42E-03 3.61 

h0/8 2.36E-03 2.94 5.39E-03 2.80 2.21E-05 3.71 8.32E-05 4.09 

ho/16 3.00E-04 2.98 7.19E-04 2.91 1.29E-06 4.10 5.09E-06 4.03 

Ao/32 3.78E-05 2.99 9.40E-05 2.94 7.76E-08 4.06 3.16E-07 4.01 

Ao/64 4.75E-06 2.99 1.22E-05 2.95 4.75E-09 4.03 1.95E-08 4.02 

£= iP,pu,pv,E), 

/(£) = {pu, pu2 + p, puv, u(E + p)), 

9(0 = {pv, puv, pv2 + p, v{E + p)). 

Here p is the density, (u, v) is the velocity, E is the total energy, p is the pressure, and 

E = jzi+ #& + *) 
with 7 = 1.4. 

The mean flow is p — 1, p = 1, and (u,v) = (1,1).  We add, to the mean flow, an isentropic vortex 
(perturbations in (u,v) and the temperature T — |, no perturbation in the entropy S = ^-): 



TABLE 3.3 
Accuracy for 2D Burgers' equation, uniform meshes, linear schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

2/5 2.67E-02 — 7.75E-02 — 8.63E-03 — 2.18E-02 — 

1/5 3.65E-03 2.87 1.16E-02 2.74 6.08E-04 3.83 1.70E-03 3.68 

1/10 4.60E-04 2.99 1.52E-03 2.93 3.97E-05 3.94 1.16E-04 3.87 

1/20 5.75E-05 3.00 1.91E-04 2.99 2.51E-06 3.98 7.37E-06 3.98 

1/40 7.18E-06 3.01 2.38E-05 3.01 1.57E-07 4.00 4.62E-07 4.00 

1/80 8.96E-07 3.00 2.97E-06 3.00 9.83E-09 4.00 2.89E-08 4.00 

TABLE 3.4 
Accuracy for 2D Burgers' equation, non-uniform meshes, linear schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

ho/2 1.69E-02 — 7.95E-01 — 3.96E-03 — 1.88E-02 — 

ho/4 2.23E-03 2.92 1.23E-02 2.69 2.87E-04 3.79 2.17E-03 3.12 

h0/8 2.84E-04 2.97 1.69E-03 2.86 1.90E-05 3.92 1.81E-04 3.58 

V16 3.57E-05 2.99 2.22E-04 2.93 1.20E-06 3.99 1.34E-05 3.77 

V32 4.48E-06 2.99 3.00E-05 2.89 7.57E-08 3.99 1.00E-06 3.74 

ho/64 5.63E-07 2.99 4.26E-06 2.82 4.75E-09 4.00 7.57E-08 3.72 

ÖT (7-l)eV 
877T2 

SS = 0, 

where (x, y) = (x — 5, y — 5), r2 = x2 + y2, and the vortex strength e = 5. 

The computational domain is taken as [0,10] x[0,10], and periodic boundary conditions are used. 

It is clear that the exact solution of the Euler equation with the above initial and boundary conditions 

is just the passive convection of the vortex with the mean velocity. 

The reconstruction procedure is applied to each component of the solution £. We first compute the 

solution to t = 2.0 for the accuracy test. The meshes are the same as those in Example 3.1 suitably scaled 

for the new spatial domain. The accuracy results are shown in Table 3.5 for the uniform meshes and Table 

3.6 for the non-uniform meshes. The errors presented are those of the cell averages of p. 

We then fix the mesh at h = | (uniform) and compute the long time evolution of the vortex. Fig. 3.4 is 

the result by the third order scheme at t = 0 and after 1, 5 and 10 time periods, and Fig. 3.5 is the result 

by the fourth order scheme. We show the line cut through the center of the vortex for the density p. It is 

easy to see the difference between the third and fourth order schemes. The fourth order scheme gives almost 

no dissipation even after 10 periods, while the dissipation is quite noticeable for the long time results of the 

third order scheme. 



TABLE 3.5 

Accuracy for 2D Euler equation of smooth vortex evolution, uniform meshes, linear schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

1 1.65E-02 — 2.60E-01 — 5.26E-03 — 7.89E-02 — 

1/2 6.31E-03 1.39 1.21E-01 1.10 7.36E-04 2.84 1.62E-02 2.28 

1/4 1.31E-03 2.27 2.53E-02 2.26 5.40E-05 3.77 1.03E-03 3.98 

1/8 2.21E-04 2.57 4.66E-03 2.44 2.32E-06 4.54 5.36E-05 4.26 

1/16 2.98E-05 2.89 6.44E-04 2.86 1.10E-07 4.40 2.48E-06 4.43 

1/32 3.77E-06 2.98 8.23E-05 2.97 6.37E-09 4.11 1.25E-07 4.31 

TABLE 3.6 

Accuracy for 2D Euler equation of smooth vortex evolution, non-uniform meshes, linear schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

ho/2 1.81E-02 — 2.98E-01 — 7.00E-03 — 8.16E-02 — 

ho/4 7.74E-03 1.28 1.44E-01 1.05 1.18E-03 2.57 1.61E-02 2.34 

h0/8 1.67E-03 2.21 2.47E-02 2.54 8.17E-05 3.85 1.31E-03 3.62 

ho/16 2.86E-04 2.55 4.79E-03 2.37 4.70E-06 4.12 1.10E-04 3.57 

ho/32 3.94E-05 2.86 7.95E-04 2.59 2.68E-07 4.13 7.73E-06 3.83 

ho/64 5.07E-06 2.96 1.25E-04 2.67 1.56E-08 4.10 5.99E-07 3.69 

4. WENO Reconstruction and WENO Schemes. In this section, we will introduce non-linear 

weights to make the resulting schemes suitable for shock computations. To ensure stability near shocks, we 

need non-negative weights, thus we need non-negative linear weights to start with. Unfortunately, for most 

triangulations, there are negative coefficients in the combinations for both the third and fourth order schemes 

constructed above. We fix this problem by grouping the linear polynomials for the third order scheme, and 

by recombining the six combinations of quadratic polynomials for the fourth order scheme. 

4.1. Grouping linear polynomials for the third order scheme. We will use the same notations as 

in the previous section. In (3.2), by consistency, ]T)s=i 7« = 1. We want to group these 9 linear polynomials 

into 3 new linear polynomials such that each new linear polynomial is still a second order approximation to 

u and the new combination coefficients (of the three new linear polynomials) are positive. We also want the 

stencils corresponding to the three new linear polynomials to be reasonably separated, so that when shocks 

are present, not all stencils will contain the shock under normal situations. 

The grouping we will introduce in the following works for most triangulations. There are however cases 

when it does give some negative coefficients with very small magnitudes, but it does not seem to affect the 

stability of WENO schemes built upon them. 

For the first quadrature point on side % [G\ in Fig. 3.1), Group 1 contains p2{0,k,i), pi(0,i,ia), 

and p5 (0,i,ii>), the combination coefficient is 72 + 74 + 75; Group 2 contains p$ (0,i,j), p6 (0,j,ja), and 

P7{0,j,jb); the combination coefficient is 73 + 76 + 77; Group 3 contains pi (0,j,k), ps(Q,k,ka), and 

PQ (0, k, kb); the combination coefficient is 71 + 78 + 79. 
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FIG. 3.4. 2D vortex evolution: third order linear scheme. 

FIG. 3.5. 2D vortex evolution: fourth order linear scheme. 

For the second quadrature point on side i, (C?2 in Fig. 3.1), Group 1 contains Pz(0,i,j), p4 (0,i,ia), 

and p5(Q,i,ib), the combination coefficient is 73 + 74 + 75; Group 2 contains P2 (0,k,i), pg(0,k,ka), and 

pg(0,fc,fc6); the combination coefficient is 72 + 7s + 79; Group 3 contains p\ (0,j,k), Pe{Q,j,ja), and 

Pt (0,j,jb); the combination coefficient is 71 + 76 + 77. 

We can do the same thing for the other two sides (j,k). The resulting polynomial R(x,y) 

(4.1) &{x,y) = J£2isPs{x,y) 
s=l 

is equivalent to R{x,y) and in most cases the coefficients 7, are non-negative. 

4.2. New combination of quadratic polynomials for the fourth order scheme. From section 

3.2, we can construct 6 combinations of quadratic polynomials which are fourth order approximations to u. 

For each quadrature point, we have 6 groups of combination coefficients for Qi,q2,q3,94,95,16- To combine 
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these 6 groups to a new one with non-negative coefficients for the <7s's, assuming that A is the 6x6 matrix 

formed by the above 6 groups of combination coefficients, we want to find x € 5R6, x = (xi ,X2,X3,X4,X5,XQ)
T 

such that 

Xi+X2+X3+ X4 + x5 + x6 = 1 

Ax >0 

which can be solved by using a linear programming procedure 

{max_i<ffij<i (xi + x2 + x3 + rc4 + xh + x6) 

subject to Ax > 0 

provided that the object (maximum) is positive. 

Unfortunately, there are meshes such that the object = 0 for some triangles. Due to this, our fourth 

order schemes have rather severe restrictions on the type of triangulations to which it can apply. Further 

investigation is needed to improve this. Currently, we only consider meshes which give a positive maximum 

(e.g. nearly uniform triangles). 

4.3. Smoothness indicators and non-linear weights. We finally come to the point of smooth 

indicators and nonlinear weights. For this we follow exactly as in Jiang and Shu [19]. For a polynomial 

p{x,y) with degree up to k, we define the following measurement for smoothness 

(4.2) S=    Y,    [ \^\M-1(Dap(xiy))2dxdy 
i<M<* 

The non-linear weights are then defined as: 

(4.3) u)j = =rh-,       u>i = 

where d is the i-th coefficient in the linear combination of polynomials (after grouping or re-combination), 

Si is the measurement of smoothness of the i-th polynomial Pi{x,y), and e is a small positive number which 

we take as e = 10-3 for all the numerical experiments in this paper. The numerical results are not very 

sensitive to the choice of e in a range from 10~2 to 10-6. In general, larger e gives better accuracy for smooth 

problems but may generate small oscillations for shocks. Smaller e is more friendly to shocks. 

4.4. Extension to the Euler systems. There are two ways to extend the previous results to systems. 

One is to do so component by component. This is easy to implement and cost effective, and it seems to work 

well for the third order scheme. We will use component-wise methods for all numerical examples with the 

third order scheme. Another extension method is by the characteristic decomposition. We will give a brief 

description in the following. 

Let us take one side of the triangle which has the outward unit normal (nx,ny). Let A be some average 

Jacobian at one quadrature point, 

(4.4) A = nx°A+ny%t 

For Euler systems, the Roe's mean matrix [25] is used. Denote by R the matrix of right eigenvectors and 

L the matrix of left eigenvectors of A. Then the scalar triangular WENO scheme can be applied to each of 

the characteristic fields, i.e. to each component of the vector v = Lu. With the reconstructed point values 

v, we define our reconstructed point values u by u = Rv. 
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TABLE 5.1 

Accuracy for SD linear equation, uniform meshes, WENO schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

2/5 2.66E-01 — 4.30E-01 — 1.38E-02 — 2.94E-02 — 

1/5 8.11E-02 1.71 1.93E-01 1.16 1.80E-03 2.94 2.74E-03 3.42 

1/10 2.65E-02 1.62 6.16E-02 1.65 8.87E-05 4.34 1.46E-04 4.23 

1/20 2.68E-03 3.31 8.77E-03 2.81 4.34E-06 4.35 7.11E-06 4.36 

1/40 1.44E-04 4.22 4.88E-04 4.17 2.30E-07 4.24 3.71E-07 4.26 

1/80 8.05E-06 4.16 2.40E-05 4.35 1.34E-08 4.10 2.12E-08 4.13 

TABLE 5.2 

Accuracy for SD linear equation, non-uniform meshes, WENO schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 

h0/2 2.79E-01 — 5.28E-01 — 1.77E-02 — 6.41E-02 — 

V4 8.43E-02 1.73 2.32E-01 1.19 8.85E-04 4.32 3.07E-03 4.38 

ho/8 2.53E-02 1.74 7.47E-02 1.64 4.08E-05 4.44 1.43E-04 4.42 

ho/16 2.24E-03 3.50 1.14E-02 2.71 1.82E-06 4.49 6.37E-06 4.49 

ho/32 1.18E-04 4.25 6.83E-04 4.06 8.95E-08 4.35 3.36E-07 4.25 

ho/64 6.21E-06 4.25 3.15E-05 4.44 4.92E-09 4.19 2.00E-08 4.07 

4.5. Parallel implementation. As an explicit method, the WENO schemes constructed above are 

easily implemented on an IBM SP-2 parallel computer. The parallel efficiency is over 90% when 16 processors 

are used. Most of the numerical examples with large meshes in the next section are obtained with the SP-2 

parallel computer using 16 processors at the Center for Fluid Mechanics of Brown University. 

5. Numerical Examples. We will implement the third and fourth order WENO schemes developed 

in the previous sections to some two-dimension test problems. First, the same accuracy tests as in the linear 

weights case are given for linear, Burgers' equation and the smooth vortex problem. Next, some non-smooth 

problems for two-dimensional Euler equations are tested. 

5.1. Accuracy test for triangular WENO schemes. We use the same examples as in section 3.3 

to test the accuracy of third and fourth order triangular WENO schemes constructed in the previous section. 

Example 5.1. Two-dimensional linear equation as defined in Example 3.1, (3.4). The accuracy results are 

shown in Table 5.1 for the uniform meshes and in Table 5.2 for the non-uniform meshes. We can see that 

the correct orders of accuracy are obtained by the third and fourth order WENO methods. 

Example 5.2. Two-dimensional Burgers' equation as defined in Example 3.2, (3.5). The accuracy results 

are shown in Table 5.3 for the uniform meshes and in Table 5.4 for the non-uniform meshes. We can see 

that the correct orders of accuracy are again obtained by the third and fourth order WENO methods. 
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TABLE 5.3 
Accuracy for 2D Burgers' equation, uniform meshes, WENO schemes. 

P1 (3rd order) P2 (4th order) 
h L1 error order L°° error order L1 error order L°° error order 

2/5 2.76E-02 — 8.18E-02 —■ 8.64E-03 — 2.106-02 — 
1/5 4.63E-03 2.58 1.20E-02 2.77 6.05E-04 3.84 1.73E-03 3.60 

1/10 6.97E-04 2.73 2.16E-03 2.47 3.94E-05 3.94 1.18E-04 3.87 
1/20 7.12E-05 3.29 1.90E-04 3.51 2.50E-06 3.98 7.42E-06 3.99 
1/40 7.63E-06 3.22 2.36E-05 3.01 1.57E-07 3.99 4.63E-07 4.00 
1/80 9.08E-07 3.07 2.96E-06 3.00 9.83E-09 4.00 2.89E-08 4.00 

TABLE 5.4 
Accuracy for 2D Burgers' equation, non-uniform meshes, WENO schemes. 

P1 (3rd order) P2 (4th order) 
h L1 error order L°° error order L1 error order L°° error order 

h0/2 2.01E-02 — 9.16E-02 — 4.18E-03 — 2.376-02 — 

ho/4 3.85E-03 2.38 1.80E-02 2.35 2.90E-04 3.85 2.61E-03 3.18 
h0/8 5.79E-04 2.73 3.39E-03 2.41 1.85E-05 3.97 1.92E-04 3.77 

ho/16 5.34E-05 3.44 3.55E-04 3.26 1.18E-06 3.97 1.35E-05 3.83 
ho/32 5.12E-06 3.38 2.95E-05 3.59 7.45E-08 3.99 9.99E-07 3.76 
ho/64 5.82E-07 3.14 4.23E-06 2.80 4.67E-09 4.00 7.56E-08 3.72 

To demonstrate the application for shock computations, we continue the the above calculation to t = 5/TT
2 

when discontinuities develop. Fig. 5.1 is the result for h = 1/20 of a uniform mesh. Fig. 5.2 is the result for 

h = h0/l6 of a non-uniform mesh. We can see that the shock transitions are sharp and non-oscillatory. 

Example 5.3. Two-dimensional vortex evolution problem as defined in Example 3.3. The accuracy results 

are shown in Table 5.5 for the uniform meshes and in Table 5.6 for the non-uniform meshes. We can see 

that the correct orders of accuracy are again obtained by the third and fourth order WENO methods. 

Fig. 5.3 and Fig. 5.4 are the results for the long time evolution of the vortex. These results are similar 

to those obtained with the linear schemes in Fig. 3.4 and Fig. 3.5. 

5.2. Riemann problems of Euler equations. The two dimensional triangular WENO methods are 

applied to one dimensional shock tube problems. We consider the solution of the Euler equations (3.6) in a 

domain of [-1,1] x [0,0.2] with a triangulation of 101 vertices in the ^-direction and 11 vertices in the y- 

direction. The velocity in the y-direction is zero, and periodic boundary condition is used in the y-direction. 

The mesh is shown in Fig. 5.5. The pictures shown below are obtained by extracting the data along the 

central cut line for 101 equally spaced points. 

We consider the following Riemann type initial conditions: 

(p,u,p) = (PL,UL,PL)     if:z<0 
{pR,UR,pR)    if a; > 0. 
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3rd order 4th order 

FIG. 5.1. 2D Burgers' equation: t = 5/TT , uniform mesh. 

3rd order 

FIG. 5.2. 2D Burgers' equation: t = 5/TT , non-uniform mesh. 

The first test case is Sod's problem [33]. The initial data is 

(PL,UL,PL) = (1,0,1), {PR,UR,PR) = (0.125,0,0.1). 

Density at t = 0.40 is shown in the first 3 plots in Fig. 5.6. 

The second test case is the Riemann problem proposed by Lax [21]: 

{pL,uL,pL) = (0.445,0.698,3.528), {PR,uR,pR) = (0.5,0,0.571). 

Density at t = 0.26 is shown in the last 3 plots in Fig. 5.6. 

We can observe a better resolution of the fourth order scheme over the third order one, and also a less 

oscillatory result from the characteristic version of the fourth order scheme over the component version. 
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TABLE 5.5 

Accuracy for 2D Euler equation of smooth vortex evolution, uniform meshes, WENO schemes. 

P1 (3rd order) P2 (4th order) 

h L1 error order L°° error order L1 error order L°° error order 
1 1.87E-02 — 2.95E-01 — 1.30E-02 — 2.05E-01 — 

1/2 1.01E-02 0.89 2.09E-01 0.50 2.50E-03 2.38 4.45E-02 2.49 
1/4 2.78E-03 1.86 6.37E-02 1.71 1.79E-04 3.80 3.29E-03 3.76 
1/8 6.47E-04 2.10 3.05E-02 1.06 6.92E-06 4.69 1.96E-04 4.07 

1/16 8.74E-05 2.89 8.14E-03 1.91 2.03E-07 5.09 4.95E-06 5.31 
1/32 7.10E-06 3.62 5.66E-04 3.85 7.83E-09 4.70 1.96E-07 4.66 

TABLE 5.6 

Accuracy for 2D Eulcr equation of smooth vortex evolution, non-uniform meshes, WENO schemes. 

P1 (3rd order) P2 (4th order) 
h L1 error order L°° error order L1 error order L°° error order 

ho/2 2.12E-02 — 3.33E-01 — 1.84E-02 — 2.14E-01 — 

hoß 1.28E-02 0.73 2.27E-01 0.55 2.80E-03 2.69 3.43E-02 2.64 
h0/8 3.84E-03 1.74 6.85E-02 1.73 2.12E-04 3.72 6.57E-03 2.38 

ho/16 8.32E-04 2.21 3.02E-02 1.18 1.09E-05 4.28 5.91E-04 3.48 

V32 1.26E-04 2.72 5.64E-03 2.42 3.76E-07 4.86 1.97E-05 4.91 
ho/64 1.16E-05 3.44 6.19B-04 3.19 1.66E-08 4.50 6.78E-07 4.86 

5.3. A Mach 3 wind tunnel with a step. This problem is from [36]. We solve the Euler equations 

(3.6) in a wind tunnel of 1 length unit wide and 3 length units long. The step is 0.2 length units high and is 

located 0.6 length units from the left end of the tunnel. Initially, a right-going Mach 3 flow is used. Reflective 

boundary conditions are applied along the walls of the tunnel and inflow and outflow boundary conditions 

are used at the entrance and the exit. 

The corner of the step is a singularity point. [36] uses an assumption of nearly steady flow in the region 

near the corner to fix this singularity. In this paper, we do not modify our method near the corner, instead 

we adopt the same technique as the one used in [7], namely refining the mesh near the corner and using the 

same scheme in the whole domain. 

We use the third order scheme for this problem. Four meshes have been used, see Fig. 5.7. For the first 

mesh, the triangle size away from the corner is roughly equal to a rectangular element case of Ax = Ay = ^, 

while it is one-quarter of that near the corner. For the second mesh, the triangle size away from the corner 

is the same as in the first mesh, but it is one-eighth of that near the corner. The third mesh has a triangle 

size ofAx = Ay—%0- away from the corner, and it is one-quarter ofthat near the corner. The last mesh has 

a triangle size of Ax = Ay = ^ away from the corner, and it is one-half of that near the corner. Fig. 5.8 is 

the contour picture for the density at time t = 4.0. It is clear that with more triangles near the corner the 

artifacts (spurious boundary layers downstream) from the singularity decrease significantly. 

5.4. Double Mach reflection. This problem is also from [36]. We solve the Euler equations (3.6) in 

a computational domain of [0,4] x [0,1]. A reflecting wall lies at the bottom of the domain starting from 
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FIG. 5.3. 2D vortex evolution: third order WENO scheme. 

FIG. 5.4. 2D vortex evolution: fourth order WENO scheme. 

x = \. Initially a right-moving Mach 10 shock is located at x = \,y = 0, making a 60° angle with the 

«-axis. The reflective boundary condition is used at the wall, while for the rest of the bottom boundary (the 

part from x = 0 to x - |, the exact post-shock condition is imposed. At the top boundary, the flow values 

are set to describe the exact motion of the Mach 10 shock. The results shown are at t — 0.2. 

We test both the third and the fourth order schemes. Four triangle sizes are used, they are roughly 

equal to rectangular element cases of Ax = Ay.= fc, Ax = Ay = ±, Ax = Ay = -L and Ax = Ay = ^ 

respectively. For the third order scheme, we use both uniform triangular mesh (equilateral triangles) and 

locally refined triangular mesh (the refined region has the above triangle sizes, Fig. 5.9 shows the region 

[0,2] x [0,1] of such a mesh of Ax = Ay = ± locally). For the fourth order, we use uniform triangular mesh 

only. For the cases of Aa; = Ay = ^ and Arc = Ay = ^, we present both the picture of whole region 

([0,3] x [0,1]) and a blow-up region around the double Mach stems. All pictures are the density contours with 

30 equally spaced contour lines from 1.5 to 21.5. We can clearly see that the fourth order scheme captures 
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FIG. 5.5. Mesh for the Riemann problems. 

the complicated flow structure under the triple Mach stem much better than the third order scheme. We 

refer to [7] for similar results obtained with discontinuous Galerkin methods. 

6. Concluding Remarks. We have presented the development of third and fourth order WENO 

schemes based on linear and quadratic polynomials for 2D triangle meshes. Accuracy and stability issues are 

considered in the design of the schemes and verified numerically. Numerical examples show the improvement 

of resolution using high order schemes. 
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FIG. 5.7. Triangulations for the forward step problem: part near the 
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DENSITY: 3rd order, triangulation 1 

DENSITY: 3rd order, triangulation 2 

DENSITY: 3rd order, triangulation 3 

DENSITY: 3rd order, triangulation 4 

FIG. 5.8. Forward step problem: SO contours from 0.32 to 6.15 
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FIG. 5.9. Triangulation for the double Mach reflection 
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FIG. 5.10. Double Mach reflection: h = ^, t = 0.2 
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Third order, h= 1/100 

Third order, h = 1/100 (local) 

Fourth order (componentwise), h= 1/100 

Fourth order (characteristic), h = 1/100 

FIG. 5.11. Double Mach reflection: h = yjL  t = 0.2 

25 



Third order, h= 1/200 

Third order, h = 1/200 (local) 

Fourth order (componentwise), h = 1/200 

Fourth order (characteristic), h = 1/200 

FIG. 5.12. Double Mach reflection: h = ^, t = 0.2 
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Third order, h = 1/200 

Third order, h = 1/200 (local) 

Fourth order (componentwise), h = 1 /200 

Fourth order (characteristic), h = 1/200 

FIG. 5.13. Double Mach reflection: h = ^g, t = 0.2 (blow-up) 
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Third order, h = 1/400 

Third order, h = 1/400 (local) 

Fourth order (componentwise), h = 1/400 

>-       as - 

Fourth order (characteristic), h = 1/400 

FIG. 5.14. Double Mach reflection: h= jijr, t = 0.2 
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Third order, h = 1/400 

Third order, h = 1/400 (local) 

Fourth order (componentwise), h = 1 /400 

Fourth order (characteristic), h = 1/400 

FIG. 5.15. Double Mach reflection: h = ^jjjj, t = 0.2 (blow-up) 
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